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Abstract— Unbiased measurement of sperm morphometric
and motility parameters is essential for assessing fertility poten-
tial and guiding visual feedback for microrobotic manipulation.
Automated analysis of multiple sperms and selection of an
optimal sperm is crucial for in vitro fertilisation treatment,
such as robotic intracytoplasmic sperm injection. However,
conventional image processing methods have limitations in
analysing small sperm objects under microscopic imaging. The
emergence of convolutional neural networks (CNNs) has offered
promising advancements in sperm analysis. However, previous
CNN methods have struggled to accurately segment tiny objects,
requiring staining or fluorescence techniques to enhance visual
contrast between sperm and culture medium, leading to clinical
impracticality. To address these limitations, we introduce a
novel segmentation network named the cross-scale guidance
(CSG) network for accurate and efficient segmentation of
minute sperm objects. The CSG network employs innovative
modules, including collateral multi-scale convolution, cross-
scale feature map guide, and multi-scale feature fusion, to
preserve essential sperm details despite their small size. Exper-
imental results indicate that the CSG network surpassed the
state-of-the-art models designed for small object segmentation,
achieving a significant increase up to 18.62% higher mean
intersection over union (mIoU). Additionally, the CSG network
excelled in sperm morphometric analysis, achieving errors
below 20%. Moreover, sperm motility parameters were further
derived from the segmentation results for comprehensive sperm
fertility analysis.

Keywords— Automation at micro/nano scale, microrobotics,
deep learning, sperm analysis, in vitro fertilisation

I. INTRODUCTION

Infertility is a global health concern that affects millions
of couples worldwide. Male factors alone contribute to 30%
of fertility cases [1]. The morphology and motility of sperm
are critical characteristics in determining its fertility potential
and selecting healthy sperm for human reproduction in
clinics.

Accurately quantifying sperm morphology and motility
is essential for the assessment of sperm quality and treat-
ment of male infertility. The World Health Organisation
(WHO) has recommended key morphometric and motility
parameters for assessing human sperm, including head area,
head length, head width, head ellipticity, tail length, VSL,
VCL, VAP, ALH, MAD, LIN, WOB, and STR [2], which
are summarised in Fig. 1a. Traditionally, high-magnification
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Fig. 1: (a) The quantified parameters representing sperm mor-
phology and motility. (b) An exemplary semen image captured at
20× objective magnification and (c) the accompanying automated
morphology analysis using computer vision algorithms. (d) The cal-
culation of sperm motility parameters. (e) An example of detected
sperm trajectory.

microscopy (100× objective) has been used for the subcel-
lular analysis of these morphology parameters [3]. However,
under high magnification, the small field of view limits the
analysis to one sperm at a time. To obtain unbiased assess-
ment of sperm morphology and motility within a semen
sample and select the viable sperm from the population,
it is necessary to evaluate multiple sperms under lower
magnification microscopy (e.g. 20× objective). However, a
significant challenge arises as the area occupied by a single
sperm is less than 1% of a petri dish under a 20× objective.

Recent developments have focused on achieving precise
localisation of the sperm head centre using the Kalman
filter for quantitative analysis of locomotive behaviour [4].
Additionally, Chang et al. [5] employed a k-means algorithm
to detect colour variations in culture dishes for identifying
sperm heads. The watershed algorithm has also proven valu-
able in segmenting sperm from the surrounding medium in
images [6]. Despite their utility, these methods are ineffective
for measuring accurate parameters of sperm morphological
structures and motility.

In addition to pixel-based image processing, deep learning
algorithms were developed to recognise medical objects [7],
[8]. Various deep learning methodologies, such as MobileNet
[9], UNet [10], and CNNNet [11], have been utilised to anal-
yse sperm characteristics. However, a common limitation of



these methodologies is the requirement for fluorescent tags or
staining dyes to enhance sperm visualisation. Unfortunately,
using foreign fluorochromes or dyes inevitably damages the
cell health, making the sperm clinically impractical.

While Dai et al. successfully employed the UNet algo-
rithm to accurately track individual sperm tail for robotic
immobilisation [12], and Liu et al. used the UNet-tiny model
for non-invasive characterisation of sperm head parameters
[13], these approaches were limited to analysing either
individual sperm head [12] or tail [13] per instance. The
non-invasive simultaneous measurement of both morphology
and motility parameters for motile spermatozoa has remained
largely unexplored.

In this study, we developed a novel deep learning ar-
chitecture called the cross-scale guidance (CSG) network
to differentiate and characterise multiple sperms at 20×
objective magnification. The CSG network incorporates four
core techniques: collateral multi-scale convolution, cross-
scale feature map guide, plug-and-play segmentation module,
and multi-scale feature fusion. Importantly, this methodology
enabled morphological (Fig. 1c) and motility (Fig. 1e) anal-
ysis without the need for fluorescence or dye staining to en-
hance sperm visibility. Experimental results demonstrate the
superior performance of the CSG network, which achieved a
mean intersection over union (mIoU) of 51.89 and errors of
less than <20% across all measured morphology parameters.
Moreover, the motility parameters calculated based on the
segmentation results are further applied to locate healthy
sperms.

II. SYSTEM SETUP AND DATA ACQUISITION

This section presents the configuration of the microrobotic
system in Sec. II-A and methods for annotating and process-
ing the data, as expounded upon in Sec. II-B.

A. System setup

The system setup for the sperm analysis and manipulation
was built on a standard inverted microscope (Nikon Eclipse
Ti2), as depicted in Fig. 2a. A 20× objective lens (Nikon
S Plan Fluor, NA: 0.45) was used to achieve microscopic
imaging. A CMOS camera (Basler A601f, with a dimension
of 640×480) was used for capturing videos at 30 s frames per
second for analysis and visual feedback. A motorised 2-DOF
translational stage (ProScan H117, Prior Scientific Inc.) was
equipped to move the sperm on the X-Y plane. Advanced
micromanipulation tasks such as sperm immobilisation and
injection were conducted with a 3-DOF micromanipulator
(MP-285, Sutter Instrument Company) with a positioning
resolution of 0.2 µm and a travel range of 25mm for each
axis.

B. Data Collection and Annotation

In this study, semen samples were obtained from ten
volunteers at the Prince of Wales Hospital in Hong Kong.
The consent form of the subjects under ethical protocols
was obtained. The specimen images were extracted from
the captured video clips at a sampling rate of one image
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Fig. 2: (a) System setup for specimen collection and automated
sperm infertility analysis. (b) Operation progress of obtaining the
sperm of interest.

for 15 frames. Following the WHO guidelines [2], the
morphological abnormalities of sperm were categorised into
four types: head defects, neck and midpiece defects, tail
defects, and excess residual cytoplasm. The ground truth of
the sperm entities in the images was carefully annotated by
experienced fertility doctors.

In this study, we built a dataset consisting of 148 images
with three semantic classes: background, normal sperm (nor-
mal), and abnormal sperm (abnormal). The labelled dataset
includes 618 instances of normal sperms (42%) and 852
instances of abnormal sperms (58%), totalling 1470 sperms
instances. Additionally, due to their small sizes, the sperm
cells cover only 1% of the entire image area, leaving the
non-sperm background to occupy approximately 99% of the
image.

III. METHODOLOGY

This section describes the key methodologies for auto-
mated sperm analysis with machine learning. The formula-
tion and details of the cross-scale guidance (CSG) model are
explained in Sec. III-A.

A. Overall Deep Learning Framework

As shown in Fig. 3, the CSG network consists of four
fundamental components: collateral multi-scale convolution
(Sec. III-B), cross-scale feature map guide (Sec. III-C),
plug-and-play segmentation and muti-scale feature fusion
(Sec. III-D). In the initial stage, the input sperm image is
processed by a stem module (depicted as the green block
in Fig. 3). This module uses a 3×3 convolution operation
with a stride of 2 to downsample the original image to a 1/2
tensor shape. To enhance feature extraction for small objects
like sperms, the cross-scale feature map guidance module
is introduced after the stem module. The CSG network
could function as a universal architecture to combine with
other segmentation modules (e.g., OCR or DeepLabV3) in
a plug-and-play manner. In the end, the fusion of the multi-
scale features combines all levels of sperm characteristics to
provide an accurate segmentation result.
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Fig. 3: Architecture of Cross-scale Guidance (CSG) network. The aggregation of low-level features with high-level features through strided
convolution is detailly illustrated in the bottom-left region.

B. Collateral Multi-scale Convolution

Computational efficacy is essential in the training and
inference phases for neural networks. Therefore, multi-scale
convolutions are strategically positioned after the steam
module (green block in Sec. III-C). The architecture of this
network has four horizontal branches and four vertical stages.
Accordingly, the logical organisation can be presented as
follows:

B11 → B12 → B13 → B14

↘ B22 → B23 → B24

↘ B33 → B34

↘ B44

(1)

where Bij represents the ith sub-branch and jth cross stage.
The output dimensions of the ith branch are exactly 1

2i+1 of
the dimensions of the original input images.

After the image size is reduced to 1/2 of the original
dimensions, the processed tensors undergo sequential con-
volutions, progressing from left to right and top to bottom.
This process progressively aggregates features spanning from
lower to higher levels in a parallel manner. Consequently,
the feature maps encapsulate information from the preceding
stages to generate a comprehensive representation.

Both the stem module and the sub-branches B11, B22,
B33, and B44 function as the encoder component of the
proposed segmentation model. Notably, a variety of advanced
backbones can be employed in the diagonal branches. In this
study, the ResNet50 architecture [14] was selected as the
encoder.

C. Cross-scale Feature Map Guide

The inherent challenge for detecting small objects lies in
preserving the feature of diminutive entities such as sperms
during a sequence of downsampling convolutions using a
stride of 2. Hence, it is imperative to harness the potential
of features characterised by larger dimensions in the initial
stages. This study applies the cross-scale feature maps to the
guidance of subsequent stages for representation learning.

An illustration of the feature map guidance spanning three
distinct scales (branches) is highlighted in the middle dashed
box and light-blue region in Fig. 3. Each bottleneck block
(pink arrow in Fig. 3) has operations including one 1 × 1
convolution followed by a 3 × 3 convolution and 1 × 1
convolution with skip connection. Moreover, the Guided
Convolution (GuidedConv) block for using the upper-level
branch to guide the lower-level branch consists of a 3 × 3
stride convolution (with a stride of 2) followed by a 1 × 1
convolution. Within this context, given three input tensors,
{Rb, b ∈ {1, 2, 3}}, the output tensor, R′, is calculated
through the following equation:

R′ = f1r (R1) + f2r (R2) + f3r(R3) (2)

where the transformation fxr (Rb) performs (r − x) 3 × 3
convolution operations with a stride of 2.

Because the final stage is connected with an additional
segmentation module that computes feature maps differently
from the remaining stages, it is essential to note that cross-
scale guidance is absent in B44 unless explicitly stated.

D. Plug-and-play Segmentation and Feature Fusion

Since of the final branch B44 extracts the highest-level
visual features of sperm entities, an integral segmentation
module is appended at the end of B44. Furthermore, to
seamlessly integrate the advanced segmentation algorithms
within the CSG network, the segmentation module is de-
signed as a plug-and-play component (indicated by the
purple arrow in Fig. 3). In this study, the experimental
evaluation included three state-of-the-art segmentation mod-
ule architectures, including a semantic segmentation system
equipped with atrous convolution and conditional random
field (DeepLabV3) [15], Object Contextual Representations
(OCR) [16], and Lite Reduced Atrous Spatial Pyramid Pool-
ing (LR-ASPP) [17].

The outputs generated at the r = 4 stage from B14, B24,
B34, and B44 have different feature scales. Therefore, a
crucial step is to re-sample these outputs to ensure uniform
height and width dimensions. Since the output originating



from B14 has the dimension most similar to that of the
original image, all sub-stream outputs are reshaped to align
with the dimensions of the B14 output by using the linear
interpolation technique. This process is visually depicted by
the right dashed box in Fig. 3.

Owing to the relatively low resolution (96 DPI (dots per
inch)) of the image acquisition with the 20× objective, the
intricate morphology of the small sperm poses a challenge
in accurate recognition. In light of these limitations, the
analysis is focused solely on specific parameters: head area,
head length, head width, head ellipticity, head angle, and
tail length. The automatic differentiation between the head
and tail components of sperms is performed based on the
distance between the component boundary and the skeleton
of the sperm, as outlined in [18].

Since the occupied region of a sperm head is significantly
larger than its tail, the analysis of sperm motility is achieved
by tracking the movement of the head. The centre of the
bounding box around the sperm head is assigned as the
sperm’s position. The sperm motility parameters are com-
puted based on the sperm’s trajectory (e.g. VSL, the velocity
along the straight-line path). Because spermatozoa may cross
over one another, their trajectories can become interpolated.
To ensure correct trajectory mapping of the target sperm, the
joint probabilistic data association filter (JPDAF) [19] was
applied to associate trajectory points belonging to the same
sperm.

IV. EXPERIMENT RESULTS AND DISCUSSION

In the experiments, the proposed CSG architecture was
evaluated and compared with the state-of-the-art machine
learning algorithms. The evaluation of segmentation perfor-
mance employs two primary metrics: intersection over union
(IoU) and the mean intersection over union (mIoU). IoU
quantifies the overlap between the prediction results and
ground truth at the pixel level, calculated by the formula:

IoU = TP/(TP + FP + FN) (3)

where TP, FP and FN represent the true positive, false
positive and false negative regions, respectively.

A. Implementation Details

The experimentation for the proposed method was con-
ducted utilising the collected sperm object dataset comprising
148 images with three semantic classes: background, normal
sperm (normal), and abnormal sperm (abnormal). These se-
mantic classes were annotated at the pixel level. To facilitate
the evaluation, the dataset was divided into two parts, the
training and testing sets, with a partition ratio of 4:1 (118
vs. 30 images).

Additionally, the mini-batch size was set to 4. The ran-
dom crop was employed to resize the input images to a
dimension of 512 × 512. The optimisation process hinged
on the Adam optimiser [20], coupled with the adoption of
cross-entropy loss. The learning rate was adjusted utilising a
cosine schedule [21], decreasing from 5×10−5 to 1×10−6.
The comprehensive training was executed for 100 epochs,

TABLE I: SEGMENTATION IOU AND MIOU (UNIT: %) FOR
VARIOUS METHODS.

Method Module Background Normal Abnormal mIoU

SegNet - 99.11 7.11 24.93 42.41
UNet - 99.30 13.82 34.06 48.25

UNet++ - 99.29 18.29 33.29 48.40

ResNet50
OCR 98.86 0.00 0.00 33.98

LR-ASPP 98.87 1.36 5.14 35.19
DeepLabV3 98.86 0.00 0.02 33.27

CSG Network OCR 99.31 21.23 32.77 51.45

(ours) LR-ASPP 99.30 22.41 33.36 51.64
DeepLabV3 99.31 21.61 34.60 51.89

with results computed by averaging three separate training
and testing cycles. The experimental computations were
performed on an RTX3090 GPU paired with an Intel Xeon
Platinum 8375C CPU.

B. Segmentation Results and Analysis

To evaluate the efficacy of the proposed method, six state-
of-the-art (SOTA) tiny-object segmentation models were in-
cluded as reference points in the experiments. These models
were stratified into two categories: (1) backbones coupled
with DeepLabV3 [15], OCR [16], and LR-ASPP [17]; (2)
encoder-decoder architectures with “U-shape” structure, in-
cluding SegNet [22], UNet [23], and UNet++ [24].

As illustrated in Tab. I, the CSG network in tandem
with DeepLabV3, yielded the highest mIoU score of 51.89,
outperforming the SOTA small object segmentation methods.
Among all SOTA methods, SegNet, UNet, and UNet++ show
an improved IoU performance of up to 15.13% compared
to the integration of ResNet50 with DeepLabV3, OCR, and
LR-ASPP. This phenomenon underscores the efficacy of the
U-shape structure that capitalises on low-level features to
enhance the ability of models to recognise tiny objects.

Furthermore, ResNet50 with the tested segmentation mod-
ules obtained less than 6% IoU in distinguishing normal
or abnormal sperm classes. Although SegNet, UNet, and
UNet++ acquired 24.93% ∼ 34.06% IoU in segmenting
abnormal sperms, these methods are limited in identifying
normal sperms, garnering IoU values in the range of 7.11%
∼ 18.29%. Conversely, the CSG network with tested seg-
mentation modules achieved IoU values exceeding 21% and
32% for normal and abnormal sperm class segmentation,
respectively. The variance in IoU across different sperm
types could potentially stem from the relatively fewer normal
sperms than the abnormal ones (618 vs. 852).

The CSG network with DeepLabV3 or OCR also achieved
superior background segmentation performance, with an IoU
of 99.31%. Notably, all other tested methods achieved back-
ground segmentation IoU exceeding 95%. This profound
difference in IoU between background (>95% IoU) and
sperm (<40% IoU) is primarily due to the background
covering nearly 99% of the total image area, while the sperm
region constitutes less than 2% of the image.

C. Visualisation

In addition to quantitative evaluation, the segmentation
results of SegNet, UNet, UNet++, ResNet50 + DeepLabV3,
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and CSG Network + DeepLabV3 were also compared with
an in-depth analysis of sperm morphology.

The prediction results of segmentation masks are exem-
plified in Fig. 4. It is clear from Fig. 4b that ResNet50
+ DeepLabV3 struggles to accurately recognise sperm lo-
cations, as evident from images without apparent masking.
Conversely, although the SegNet, UNet, and UNet++ al-
gorithms successfully detected all sperm positions in the
image (Fig. 4c), they fell short in precisely identifying the
heads and tails of the sperm. Notably, SegNet, UNet, and
UNet++ misidentified the micropipette as a sperm in the
second sample (refer to the third and fourth rows in Fig. 4c-
e). In contrast, the CSG network + DeepLabV3 exhibited
the capability to identify all sperm positions accurately and
effectively reconstruct the morphologies of sperms entities
within the image (see Fig. 4f). Moreover, the proposed
CSG network + DeepLabV3 classified the micropipette as
background.

Furthermore, the sample sperm image has two classes,
normal and abnormal, represented by red and green regions
in Fig. 4. Although SegNet, UNet, and UNet++ successfully
detected all sperm positions, they mistakenly categorised
normal sperms as abnormal ones, as visually highlighted in
Fig. 4c-e. However, the CSG network + DeepLabV3 profi-
ciently differentiated normal and abnormal sperms, aligning
closely with the ground truth, as evidenced by the red and
green regions in Fig. 4af.

D. Sperm Morphometric Analysis

To assess the performance of automated segmentation
algorithms in the medical application of tested models, the
morphometric parameters were measured. The ground truth
values of sperms in testing images (321 sperms, 30 images)
were measured using ImageJ by averaging annotation from
three independent expert technicians. The errors (± standard
error) associated with automated quantification were assessed
across various morphometric parameters using SegNet, Unet,
UNet++, ResNet50 + DeepLabV3, and CSG Network +
DeepLabV3. These errors are summarised in Fig. 5.

It is evident that ResNet50 + DeepLabV3, in line with
the findings in Tab. I and Fig. 4b, exhibited errors exceeding
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Fig. 5: Errors in automated morphometric analysis using deep
learning methods compared to manual benchmark.

95.40% across all parameters, suggesting that the ResNet50
+ DeepLabV3 struggled to recognise sperms in the images.
However, the proposed CSG Network + DeepLabV3 attained
the smallest errors in all sperm morphometric parameters,
with percentages ranging from 8.60±1.06% for head area,
2.22±0.57% for head length, 3.28±1.02% for head width,
15.66±2.29% for head ellipticity, 0.01±0.00% for head
angle, and 17.93±2.74% for tail length, outperforming the
second-best model, UNet++, by a reduction of up to -8.72%.

E. Case Study

To investigate the novel methods in the analysis of sperm
structures, a case study was performed by randomly selecting
five individual sperm samples. Subsequently, the predictive
values of morphological parameters computed by the CSG
Network + DeepLabV3 are presented in Tab. II. The cal-
culated morphological parameter values for healthy sample
sperms were 14.50∼25.31 µm2 for head area, 4.75∼5.74 µm
for head length, 3.00∼3.75 µm for head length, 1.27∼1.67
AU for head ellipticity, and 33.03∼40.45 µm for tail length.
Notably, the most noticeable disparities between prediction
results and ground truth were observed in head area and tail
length, attributing to the challenges associated with unclear
boundaries of sperm objects in low-resolution images. More-
over, the first sample had head parameter values similar to



TABLE II: AUTOMATED QUANTIFICATION OF FIVE SPERM SAMPLES (AU: ARBITRARY UNIT).

Sperm No.

Morphology Motility

Healthy
Head Tail

Normal Normalarea length width ellipticity angle length VSL VCL VAP ALH MAD LIN WOB STR
(µm2) (µm) (µm) (AU) (°) (µm) (µm/s) (µm/s) (µm/s) (µm/s) (°) (AU) (AU) (AU)

1 14.50 5.62 3.00 1.88 90.00 15.74 ✗ 12.64 12.64 12.65 0.66 0.62 1.00 1.00 1.00 ✓ ✗

2 14.50 5.00 3.00 1.67 0.00 38.93 ✓ 0.68 0.80 0.98 0.82 0.97 0.85 1.22 0.70 ✗ ✗

3 17.50 5.74 3.50 1.64 2.73 40.45 ✓ 11.97 12.01 12.01 0.99 0.22 1.00 1.00 1.00 ✓ ✓

4 19.56 6.25 2.00 3.13 72.25 33.83 ✗ 0.20 0.20 0.21 0.29 0.47 0.98 1.01 0.98 ✗ ✗

5 25.31 4.75 3.75 1.27 0.00 33.03 ✓ 0.76 0.76 0.76 0.10 3.19 1.00 1.00 1.00 ✗ ✗

healthy spermatozoa, but its tail length fell below 20 µm, one
of the characteristics of abnormal sperms.

Furthermore, the motility measurement of the sperm in
the right part of Tab. II indicates that sperms No. 2, 4, and
5 hardly moved, with VCL lower than 1 µm/s. Thus, sperms
No. 2, 4, and 5 are regarded as abnormal in terms of motility.
In contrast, sperms No. 1 and 3 exhibited VCL and VAP over
12 µm/s, and 1.00 for LIN, WOB, and STR, which are within
the normal range for sperm characteristics. Although sperm
No. 1 was normal in motility, it had abnormal morphology.
Thus, sperm No.3 was the only healthy sperm among the
five samples.

V. CONCLUSIONS

In this paper, we introduce a novel tiny object segmenta-
tion network, the CSG network, to enhance the performance
of segmenting sperm in medical applications. The exper-
imental results indicate that the CSG network is capable
of differentiating sperms by measuring both morphology
and motility parameters with high accuracy and efficiency.
The proposed CSG network outperformed SOTA methods
by over 3.59% mIoU and delivered over 16.45% better
mIoU than the conventional ResNet50-based segmentation
network. Additionally, the CSG network achieved errors of
less than 20% in analysing sperm morphometric characteris-
tics. Visualisation results demonstrate that the CSG network
could accurately detect all sperm locations and effectively
discriminate between normal and abnormal sperms. Further-
more, the localisation and tracking of selected high-quality
sperm offer accurate feedback to the microrobotic system for
advanced reproductive treatment.
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S. Härtel, “Gold-standard and improved framework for sperm head
segmentation,” Computer Methods and Programs in Biomedicine, vol.
117, no. 2, pp. 225–237, 2014.

[6] L. F. Urbano, P. Masson, M. VerMilyea, and M. Kam, “Automatic
tracking and motility analysis of human sperm in time-lapse images,”
IEEE Transactions on Medical Imaging, vol. 36, no. 3, pp. 792–801,
2016.

[7] H. Liu, D. Li, C. Dai, G. Shan, Z. Zhang, S. Zhuang, C.-W. Lee,
A. Wong, C. Yue, Z. Huang et al., “Automated morphological grading
of human blastocysts from multi-focus images,” IEEE Transactions on
Automation Science and Engineering, pp. 1–9, 2023.

[8] W. Dai, R. Liu, T. Wu, M. Wang, J. Yin, and J. Liu, “Deeply supervised
skin lesions diagnosis with stage and branch attention,” IEEE Journal
of Biomedical and Health Informatics, pp. 1–12, 2023.

[9] H. O. Ilhan, I. O. Sigirci, G. Serbes, and N. Aydin, “A fully automated
hybrid human sperm detection and classification system based on
mobile-net and the performance comparison with conventional meth-
ods,” Medical & Biological Engineering & Computing, vol. 58, pp.
1047–1068, 2020.

[10] R. Marı́n and V. Chang, “Impact of transfer learning for human
sperm segmentation using deep learning,” Computers in Biology and
Medicine, vol. 136, p. 104687, 2021.

[11] G. Shan, Z. Zhang, C. Dai, H. Liu, X. Wang, W. Dou, and Y. Sun,
“Robotic cell manipulation for blastocyst biopsy,” in International
Conference on Robotics and Automation. IEEE, 2022, pp. 7923–
7929.

[12] C. Dai, G. Shan, H. Liu, C. Ru, and Y. Sun, “Robotic manipulation of
sperm as a deformable linear object,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 2799–2811, 2022.

[13] G. Liu, H. Shi, H. Zhang, Y. Zhou, Y. Sun, W. Li, X. Huang, Y. Jiang,
Y. Fang, and G. Yang, “Fast noninvasive morphometric characteri-
zation of free human sperms using deep learning,” Microscopy and
Microanalysis, vol. 28, no. 5, pp. 1767–1779, 2022.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[16] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for
semantic segmentation,” in European Conference on Computer Vision.
Springer, 2020, pp. 173–190.

[17] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for Mo-
bileNetV3,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 1314–1324.

[18] F. Ghasemian, S. A. Mirroshandel, S. Monji-Azad, M. Azarnia, and
Z. Zahiri, “An efficient method for automatic morphological abnor-
mality detection from human sperm images,” Computer Methods and
Programs in Biomedicine, vol. 122, no. 3, pp. 409–420, 2015.

[19] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data
association filter,” IEEE Control Systems Magazine, vol. 29, no. 6,
pp. 82–100, 2009.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[21] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions, 2017, pp. 1–16.

[22] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in International Con-
ference on Medical Image Computing and Computer Assisted Inter-
vention. Springer, 2015, pp. 234–241.

[24] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
“UNet++: A nested U-Net architecture for medical image segmenta-
tion,” in 8th ML-CDS Workshop on International Conference on Med-
ical Image Computing and Computer Assisted Intervention. Springer,
2018, pp. 3–11.


	Introduction
	System Setup and Data Acquisition
	System setup
	Data Collection and Annotation

	Methodology
	Overall Deep Learning Framework
	Collateral Multi-scale Convolution
	Cross-scale Feature Map Guide
	Plug-and-play Segmentation and Feature Fusion

	Experiment Results and Discussion
	Implementation Details
	Segmentation Results and Analysis
	Visualisation
	Sperm Morphometric Analysis
	Case Study

	Conclusions
	References

