
  

  

Abstract— Obtaining the position of the manipulated cell and 

manipulation tool is an essential step in robotic cell 

manipulation. While existing methods are capable of locating 

the x-y position of cells and manipulation tools within the focal 

plane, it remains a challenging task to locate the z-position of the 

manipulated cell, especially when the cell is motile and changing 

its appearance in microscopic images. Here we propose a new 

strategy for estimating z-positions of motile cells. Taking 

advantage of the shallow depth of field of an optical microscope, 

we transform the z-position solving problem into a multi-class 

classification problem. Different from the existing depth of focus 

and depth of defocus methods, our strategy takes a single image 

of a cell as input and classifies it into different originating 

z-positions. The multi-class classification problem is then solved 

by a deep learning classification approach. Using motile sperm 

as an example, the proposed strategy achieved a Top-1 accuracy 

of 77.3% and Top-2 accuracy of 96.1%. The proposed strategy 

provides a new approach for estimating z-positions of motile 

cells from a single monocular microscopic image, thus paving 

the road for 3D robotic cell manipulation. 
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I. INTRODUCTION 

The synergy between robotics and cell biology has 
become increasingly strong over the past decades. Robotic 
systems have been developed for patterning [1], grasping [2], 
and aspirating and injecting single cells [3][4]. In robotic cell 
manipulation, it is essential to obtain the positions of the 
manipulated object (i.e., cell) and the manipulation tool (e.g., 
a glass micropipette). The task discussed in this paper is 
obtaining the position of a motile sperm, which is an essential 
step for clinical infertility treatment (e.g., injecting a sperm 
into an egg cell) [4]. Since the position information of sperm 
cells is in three dimensions, it is necessary to accurately 
position the x, y, and z-positions of the sperm cell head in the 
in-focus state of the microscope field of view for further 
microscopic manipulation of sucking by the robot. Due to its 
motile nature, a sperm often swims in and out of the 
microscope focal plane. This property results in different 
visual appearances of the sperm head in out-of-focus images 
than in focused images [5]. Even with mature technology for 
the positioning of sperm cells in the x and y-axis directions in 

 
 

The authors are with School of Science and Engineering, The Chinese 
University of Hong Kong, Shenzhen, 517182, Guangdong Province, China 

(e-mail: 119010017@cuhk.edu.cn, wangjiaqi@cuhk.edu.cn). Corresponding 

author: Zhuoran Zhang (zhangzhuoran@cuhk.edu.cn).  

This work is supported by the University Development Fund of 

CUHKSZ (UDF01002141), and Guangdong Basic and Applied Basic 

Research Foundation (2021A1515110023). 
 

the in-focus state [6], the positioning of the z-axis is still 
limited by many factors, including the small range of in-focus, 
which is always on a micron scale, caused by the small depth 
of field of the microscope lens. Due to such limitation, 
obtaining the z-position of sperm cells in the in-focus state 
requires high precision for practical operations. 

Previous studies on analyzing z-position of sperm cells in 
the in-focus state mainly covered two methods, namely depth 
from focus [7] and depth from defocus [8]. The general 
principle of depth from focus algorithm is to obtain a set of 
focus pictures by photographing objects at different depths to 
form a focus stack and calculate the characteristic values of 
each image in the stack, such as the pixel gray level, the 
corresponding edge value [9], etc. The image with the best 
performance for the indicator is identified by the algorithm as 
the in-focus state. For autofocusing algorithms like depth 
from focus, the ideal output is always defined as having a 
maximum value at the location of the best-focused image and 
decreasing with increasing defocus [10]. However, this 
method is not suitable for imaging sperm cells. Since sperm is 
active and the movement is unpredictable, the time required 
for the camera to collect a focus stack and the bandwidth 
limitation of the camera itself is difficult to meet the focus 
changes during sperm movement.  

For the other method, depth from defocus, it is necessary 
to establish a one-to-one correspondence between the focus 
and the depth by measuring a certain feature of the image, 
such as the blur of the observed object as the feedback 
information of the depth [10][11]. Since sperm swimming is a 
three-dimensional movement, the movement of sperm in the 
z-axis direction will affect the observation of the blur degree 
of sperm cells in the microscopic field of view, which will 
cause errors in the establishment of the corresponding 
relationship between defocus degree and cell depth. 

This paper presents a strategy that is capable of 
simultaneous completion the positioning and prediction of the 
distance of sperm cells to the in-focus state based on deep 
learning. We use a DNN classification model to learn and 
classify the morphology of sperm cells at different z positions, 
so as to predict the relative position of sperm with the in-focus 
state as a reference based on the image of sperm under the 
microscope in real-time operation. Compared with 
conventional focus measure-based methods, with the use of 
this classification strategy, quantitative results show that it 
can be more accurate to locate the sperm.                                                                                                                                                                                                                                                                                                                                                                                                                         
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Fig. 1. During movement, motile sperm change their appearance within the 

focal plane. Scale bar, 5 µm. 
 

 



  

II. EXPERIMENTAL SETUP 

A. System Setup 

The robotic cell manipulation system is built around a 
standard inverted microscope (Eclipse Ti2, Nikon). A CMOS 
camera (Basler MED ace 23 MP 164 color, Basler) is 
connected to the microscope to capture images at a bright 
field. The objective in the experiment was set to 40× for 
sperm observation, which is identical to the magnification 
used in clinical sperm manipulation tasks. All cell slides used 
in the study were located on a motorized microscope slide 
stage (ProScan III, Prior). During the automated procedure of 
image acquisition, the movements including x, y, and z-axis 
translation motions of sperm slides were achieved by the 
motorized Prior stage. 

B. Preparation of Sperm Samples 

All sperm samples in the experiment were collected from 
bovine semen. Holding treatment was preprocessed on 
collected semen samples to reduce cell motility for 
observation. The semen sample was aspirated at a volume of 
5 mL using a pipette, then mixed with the diluent (PBS, 
Aladdin, China) in a volume ratio of 1:1. For each imaging 
experiment, 5 μL of sperm cell sample was added to the slide 
for subsequent image acquisition.  

 

III. METHODS  

A.  Problem Formulation 

To obtain the z-position of sperm, the depth from focus 
methods need to obtain a stack of images from different focal 
planes, then calculate the focus measure score for each image 
in the stack and select the image with the highest focus 
measure score. This trial-and-error-based searching strategy 
is time-consuming and cannot satisfy the speed requirement 
in locating the z-position of a motile sperm. In contrast, the 
depth from defocus method can achieve z-position estimation 
in real time because it takes a single image as input. In terms 
of accuracy, both methods fail to address the changes in 
sperm appearance during sperm movement. For instance, 
sperm movement introduces noise in the focus measure score 
for the depth from focus method, and it is infeasible to 
establish a look-up table for each sperm for the depth from 
defocus method. Due to the motile nature of sperm, it is 
highly desired to estimate z-position of motile sperm in 
real-time (using a single image) with high accuracy. 

Taking advantage of both methods, this paper proposes a 
novel strategy for sperm z-position estimation. The depth 
from focus method is capable of distinguishing images that 
are in-focus and out-of-focus but is slow in speed, whereas 
the depth from defocus method is fast in speed but does not 
distinguish in-focus and out-of-focus images. This paper uses 
a single image as input while distinguishing the in-focus 

status of the image. This naturally changes the problem of 
estimating z-position into a classification problem: in-focus 
and out-of-focus. Considering the limited depth of field of 
optical microscopes, the out-of-focus images could further be 
classified into images from different focal planes. Thus, the 
z-position estimation problem becomes a multi-class 
classification problem: i.e., given a single image as input, 
classify the image into different focal planes and predict its 
z-position (focal plane). The multi-class classification 
problem can then be solved by deep learning approaches. 

The proposed strategy also takes advantage of the limited 
depth of field of optical microscopes. Objects within the 
depth of field are simultaneously in focus, while the limited 
depth of field gives a natural discrete “label” of the 
originating focal plane of each image. This also determines 
the resolution of the proposed method for estimating 
z-position. The depth of field of a microscope follows:  

𝑑 =
𝜆 ∙ 𝑛

𝑁𝐴2
+

𝑛

𝑀 ∙ 𝑁𝐴
𝑒 

where d represents the depth of field, λ is the wavelength of 
illuminating light, n is the refractive index of the medium 
(typically 1.000 for air or 1.515 for immersion oil) between 
the coverslip and the objective front lens element, and NA is 
the objective numerical aperture. The variable e is the 
smallest distance that can be resolved by a detector that is 
placed in the image plane of the microscope objective, whose 
lateral magnification is M. 

For a 40× objective with a numerical aperture of 0.65, the 
depth of field is 1.0 μm, thus, the resolution for z-position 
estimation is 1.0 μm. Using an objective with a higher 
numerical aperture could further increase the resolution. 

B. Transforming Z-position Estimation into a DNN-based 

Classification Approach 

Through the deep learning model, the problem of 
selecting images in which sperm is in-focus is transformed 
into the problem of classifying the morphology of sperm in 
different z-positions [see Fig. 3]. For a given sperm, a stack of 
2N+1 images is formed by moving the slide stage up and 
down a fixed distance D to change the z-position for N times 
respectively, with the focused state as the starting position. 
Then, the in-focus image is set as label 0. Under the same 
principle, each obtained image above the focal plane is set as 
label 1, label 2, and so on, and each image below the focal 
plane is set as label N, label N+1, and so on. 

The classification model adopted in this work is ResNet 

Fig. 3. Overall workflow of the proposed classification model. 

 

 
Fig. 2. Images of a sperm head captured at different focal planes 
(z-positions). Scale bar, 5 µm. 
 



  

 
Fig. 5. Microscopic images of sperm out of the range of -4 μm to 4 μm  

of the in-focus plane. Scale bar, 5 µm. 
 

34 [12], with the classification procedure shown in Fig. 4. 

ResNet34 is a BasicBlock-based convolutional neural 

network with 34 layers. BasicBlock consists of two weight 

layers, utilizing a residual mapping strategy to map input 

feature x to H(x)-x as the feature map to output. According to 

the crucial position of depth of a neural network in learning, 

compared with other DNN models, ResNet can solve the 

problem of gradient explosion and gradient disappearance 

caused by network deepening, and successfully achieve 

deeper network depth to obtain more information. As shown 

by our results in Section IV.A, ResNet34 provides a balanced 

trade-off between classification accuracy and inference speed. 

With the help of this classification strategy, after taking an 

image of the current sperm, the model can feed back the 

category to which the sperm image belongs. As the per 

analysis of the depth of field, the selection criteria for in-focus 

images of sperm are within ±1 µm of the microscope focal 

plane. 
 

To train the model, a dataset containing 900 images of 

sperm was collected. The dataset was constructed by 100 

image stacks acquired from 100 sperm cells, with 90 stacks 

used for training and validating and 10 stacks for testing. For 

each image stack, it consisted of 9 images ranging in 

z-positions from -4 μm to +4 μm with a spacing of 1 μm 

relative to the microscope focal plane. To collect the dataset, 

the robotic system automatically controlled the motion of the 

z-axis of the motorized microscope stage, while grabbing and 

saving images simultaneously to acquire data set samples. 

The chosen sperm cells were initially put on the Prior stage, 

and were manually located at the in-focus state under the 

microscopic field of view. Acquisition of the sperm was then 

performed with the change of 1 μm on z-positions of sperm 

until 4 μm above and below its focal plane respectively, but 

fixed x and y-positions. As shown in Fig. 5 (a) and (b), the 

images out of the 4 μm range (above or below the focal plane) 

become blurry and it is hard for a human to distinguish the 

out-of-focus status from the image. After image processing 

with the principle of choosing the center of the sperm head as 

the center of the image, a stack of images in the size of 64×64 

pixels for one sperm was recorded (see Fig. 2). Since each 

chosen sperm cell was detected in a continuous frame of 

images, the difference of visual appearances of a sperm head 

in out-of-focus states could be recorded in succession from its 

in-focus state. 

 

IV. RESULTS AND DISCUSSIONS 

A. Comparison of Performance of Different DNN Models 

Aimed to find a deep learning model with a good trade-off 
of accuracy, speed, and size, other state-of-the-art DNN 
classification models were compared, including ResNet50, 
ResNet101, GoogleNet [13], and AlexNet [14]. The 
prediction results on the same dataset are summarized in 
Table 1. Top-1 and Top-2 accuracy are used to evaluate the 
performance of DNN models. These models achieved the 
Top-1 accuracy with the range from 65.1% to 77.3%, and a 
Top-2 accuracy ranging from 91.1% to 96.7%.  Comparing 
the model size of each algorithm, GoogleNet takes the 
smallest occupied size. While for the speed of training and 
testing, AlexNet is the fastest. Among these five models, 
ResNet 34 achieved the highest Top-1 accuracy of 77.3%, 
with the second fastest inference time of 29 ms. Hence, 
ResNet 34 is finally chosen as the DNN-based classification 
method to estimate z-position of sperm. 

B. Comparison of the Proposed DNN Method versus 

Conventional Focus Measure-based Methods 

Besides adopting DNN models for prediction, we also 
examined the performance of conventional focus 
measure-based methods, for example, Entropy [15] and 
Tenengrad [16]. For an immotile sperm, the performance 
based on a dataset derived from images of sperm heads at 
different z-positions can be seen in Fig. 6 (a), (b). The results 
imply that both methods are able to capture the relationship 
between the z-positions of sperm and the corresponding 
microscopic images, and they both reach the local maximum 
(i.e., peak) when matching with the sharpest in-focus sperm 
head images (z = 0 μm). However, when applying the focus 
measure-based methods for motile sperm, even capturing the 
sperm images within the same in-focus focal plane, both 
algorithms show a noisy focus measure curve. Within the 
same focal plane, the intrinsic sperm movement (e.g., sperm 
rotation along the head axis) changes the appearance of the 
sperm in the image, thus adding noise to the focus measure 

Fig. 4. Illustration of ResNet 34 model of taking a single microscopic image as 
input and predicting the z-position of the sperm. 
 

 

DNN Models Top-1 Accuracy 

(%) 

Top-2 Accuracy 

(%) 

Model Size Training Time (s) Inference  Time (ms) 

AlexNet 65.1 91.1 58.4 M 283 21 

GoogleNet 76.3 95.7 41.4 M 612 32 

ResNet34 77.3 96.1 85.3 M 564 29 

ResNet50 76.12 96.34 94.4 M 743 32 

ResNet101 76.5 96.7 170.7 M 1201 41 
 

Table 1. Performance of z-position predicted by different DNN-based models 



  

curves and making the focus measure-based methods 
inapplicable to estimating z-positions of motile sperm.  

In contrast, for motile sperm with changing appearance, 
the proposed DNN classification method achieved a Top-1 
accuracy of 77.3% and a Top-2 accuracy of 96.1% for 
estimating sperm z-positions [see the confusion matrix in Fig. 
8]. This is mainly because the training dataset has included 
images of sperm with different appearances, and during 
training, the DNN model classifies images of different moving 
sperm into their actual z-position. The movement-induced 
appearance change has been learned and incorporated into the 
model training process. Considering the in-focus state of the 
sperm head image is chosen within the range of ±1 µm relative 
to the microscope focal plane, the results confirm us that 
DNN-based classification method is a valid and efficient 
strategy for selecting the in-focus image of sperm heads, as 
well as predicting the corresponding z-positions. 

V. CONCLUSION 

In this study, we propose a strategy to transform the 

z-positioning problem of sperm cells into a deep 

learning-based classification problem, which can both predict 

the current position of sperm and address the difficulty of 

in-focus positioning. For comparing the performance of 

selecting sperm in-focus state, we exemplify different DNN 

models, as well as two traditional methods. Their performance 

is not unimodal within the selected range of z-positions and is 

limited to immotile sperm, which is contrary to the actual 

demand. Due to those limitations, we turned our solution to 

deep learning. Through the separate training of different 

DNN-based models, ResNet34 is examined to achieve a better 

balance in accuracy, speed, and model size. Using this model, 

we can estimate the sperm’s z-position of sperms in robotic 

cell manipulation. 
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Fig. 6. Performance of focus-measure based algorithms for estimating the 

z-position of immotile sperm. For immotile sperm, both Entropy and 

Tenengrad algorithms could locate the correct in-focus z-position (0 μm). 
 

 
Fig. 8. Confusion matrix map of ResNet34. 
 

 
Fig. 7. For motile sperm, conventional focus-measure based methods failed 

to estimate their z-positions. Within the same in-focus focal plane, the 
intrinsic sperm movement changed sperm appearance thus adding noise 

into the focus measure. 
 

 


